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Abstract

We present a model of olfactory bulb-cortex interaction for the 
purpose of mixture processing with gas sensor arrays. The 
olfactory bulb is modeled with a neurodynamic model whose 
lateral inhibitory connections are learned through a modified 
Hebbian-anti-hebbian rule. Bulbar outputs are then projected in 
a non-topographic fashion onto the olfactory cortex. 
Associational connections within cortex using Hebbian 
learning form a content addressable memory. Finally, 
inhibitory feedback from cortex is used to modulate bulbar 
activity. Depending on the form of feedback, Hebbian or anti-
Hebbian, the model is able to perform background suppression 
or mixture segmentation. The model is validated on 
experimental data from a gas sensor array.  

I. INTRODUCTION 

Recognizing odorants against complex backgrounds and 
identifying the components of a mixture are common olfactory 
discrimination tasks encountered in daily life situations. 
Several computational models have put forth the hypothesis 
that cortical feedback to the bulb may play a role in achieving 
these computational functions. Ambrose-Ingerson et al. [1] 
have modeled these feedback connections to account for 
hierarchical recognition of odors by humans. In this model, 
cues common to a subset of odorants are recognized before 
those that are odorant-specific. Li and Hertz [2] have shown 
that centrifugal connections may cause odor-specific 
adaptation, leading to segmentation of odor mixtures. 
Grossberg [3] has proposed that cortical connections to the 
bulb may selectively filter the bulb input and cause resonance 
between the two regions. Yao and Freeman [4] have implicated 
these feedback connections with chaotic dynamics in the bulb. 

In this paper, we will present a model of olfactory bulb–
cortex interaction, and show that two different computational 
functions can be achieved (mixture segmentation, weaker 
odor/background suppression) depending upon the learning 
rule that is used to establish the cortical feedback connections 
to the bulb: anti-Hebbian or Hebbian, respectively. We validate 
the use of these computational models to handle odor mixture 
signals from an array of gas sensors.    

II.NEURODYNAMICS MODEL 

The olfactory bulb is the first relay station in the olfactory 
pathway, and the site where the bulk of the signal processing 

takes place. We model the OB using the classical additive 
model from neurodynamics [5, p. 676], as follows: 
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where vj is the activity of bulb neuron j, τj is the time 
constant that captures the dynamics of the neuron, Lkj is the 
synaptic weight between neurons k and j, M is the number 
of neurons, Ij is the external input from the olfactory 
epithelium, FB is the feedback connectivity matrix, yi is 
the activity of cortical neuron i, and ( )⋅ϕ  is a non-linear 
activation function (logistic function) given by: 
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where the constants a1 and a2 are set to 5.8889 and 0.5 
respectively to match the dynamic range of input signals 
from the chemosensor array ([0, 1]). 

 The lateral connections L in the bulb are established 
through a Hebbian update rule proposed in [6] as follows:  
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where 1OI is the input olfactory bulb pattern for odor O1, α 
and β are scaling parameters, which provide a necessary 
tradeoff between the first correlation term and the second 
decorrelation term. This form of update has been shown to 
enhance the contrast between input patterns [6]. 

The olfactory bulb sends non-topographic and many-
to-many projections to the olfactory cortex. These 
convergent and divergent (many-to-many) projections 
suggest that cortical neurons detect combinations of co-
occurring molecular features of the odorant, and therefore 
function as “coincidence detectors” [7]. Apart from these 
forward connections, the cortex is characterized by 
excitatory and inhibitory lateral connections that are 
known to play an important role in the storage odors with 
minimum interference and pattern completion of degraded 
stimuli [8]. Together, these two architectural features of 
the PC (many-to-many connection from OB, and lateral 
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association connections between cortical cells) form the basis 
for the synthetic processing of odors [7].  

We model these olfactory circuits using an additive model, 
similar to the olfactory bulb in equation (1), as follows:  
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where yj is the activity of cortical pyramidal neuron i, λi is the 
time constant of the neuron, ACki is the synaptic weight 
between neurons k and i obtained through Hebbian learning, P 
is the number of neurons, FF is the feedforward connectivity 
matrix established through Hebbian learning, and vj is the 
activity of bulb neuron j. 

The associational connections AC within cortex are 
established through Hebbian learning, such that neurons that 
code for at least one common odor have purely excitatory 
connections between them, and neurons that encode for 
different odors (no common odor) have purely inhibitory 
connections between them. The excitatory lateral connections 
perform pattern-completion of degraded inputs from the bulb 
[8], whereas the inhibitory connections introduce winner-take-
all competition among cortical neurons [9].  

The last component of the model involves feedback 
connections from the cortex to the bulb.  To model these 
feedback connections (FB) in equation (1), we use either anti-
Hebbian or Hebbian rule as follows: 
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where Y is the matrix of cortical neuron outputs to different 
pure odors (organized as row vectors), V is the matrix of bulb 

neuron outputs to pure odors (row vectors), and γ is a 
scaling parameter. 

In the case of anti-Hebbian learning, all connections 
are initialized to 0. The anti-Hebbian update forms 
feedback connections between the cortical and the bulb 
neurons that respond to at least one common odor. The 
resulting feedback from cortex inhibits bulb neurons 
responsible for the cortical response, in a manner akin to 
the model proposed in [1], resulting in the temporal 
segmentation of binary mixtures.   

In the case of Hebbian learning, all connections are 
initialized to –1. The Hebbian update retains only those 
connections between cortical neurons and bulb neurons 
that respond to different odors (no common odor).  The 
resulting feedback from cortex inhibits bulb neurons other 
than those responsible for the cortical response, causeing 
cortical activity to resonate with OB activity as suggested 
in [3]. This type of resonance allows the model to lock 
onto a particular odor and suppress the background/weaker 
odor.   

Proof of concept for this model is best illustrated with 
an example. Let the encoding of two simulated odors at the 
bulb be OBA=[1,0,0,1,1,0]T and OBB=[0,1,1,1,0,0]T, and 
the encoding at the cortex be OCA=[1,1,0,0,0,0] T and 
OCB=[0,0,1,1,0,0]T, respectively. Using these patterns, 
lateral connections in the OB (not shown in Fig 1) and 
associational connections within cortex (shown in Fig 1 
(a)) were established through Hebbian learning as 
described above. Time constants were set to 10ms and 5ms 
for bulb and cortical neurons, respectively.  Model 
parameters were set as follows: α=0.1, β=0.075, and γ=1.  
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Fig 1. Bulb-cortex interaction. (a) Lateral connections in OC are learned through Hebbian updates (single analytes used for 
training). (b) Feedback connections established through anti-Hebbian updates. (c) Feedback connections established through 
Hebbian updates. 
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A. Case 1: Anti-Hebbian learning for temporal 
segmentation  

Anti-Hebbian feedback connections are shown in Fig 1(b). 
Note that these connections are the reverse of the forward 
connections in Fig 1(a). Following learning with pure 
odors, the model is exposed to a mixture of odor A and B 
[0.8,0.5,0.5,0.6,0.8,0.0]T. As a result of lateral inhibition, 
OB activity for the stronger odor A suppresses the weaker 
activity of odor B. Hence odor A is first recognized by the 
cortex. Subsequently, feedback from cortex suppresses 
odor A activity in the bulb, allowing odor B to win the 
competition. To illustrate this effect, Fig 2 shows the 
activity in the OB and the OC over the course of several 
periods. The activity of B1 and B5, which code for odor A, 
become out of phase with B2 and B3, which code for odor 
B. The common mode B4 is removed. Further, the activity 
of C1 and C2, which code for odor A, becomes out of 
phase with C3 and C4, which code for odor B. Hence anti-
Hebbian learning of centrifugal projections realizes 
temporal segmentation of odor mixtures in both bulb and 
cortex. 
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Fig 2. (a) Temporal segmentation of binary mixtures 

through anti-Hebbian feedback connections. 
 

B. Case 2: Hebbian learning for background 
suppression and resonance  

Hebbian feedback connections are shown in Fig 1(c). 
Following learning with pure odors, the model is exposed 
to a mixture of odors A and B [0.8,0.5,0.5,0.6,0.8,0.0]T. In 
this case, cortical feedback suppresses the weaker 
background odor (B) immediately and resonates with odor 
A, as shown in Fig 2. 
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Fig 3. Suppression of background/weaker odor through 
Hebbian feedback connections. 

III. EXPERIMENTAL RESULTS 

To validate the model, we have used experimental data 
from an array of gas sensors exposed to acetone (A), 
isopropyl alcohol (I), ammonia (M), as well as their binary 
mixtures.  Two Figaro MOS sensors (TGS 2600, TGS 
2620) [10] were temperature modulated using a sinusoidal 
heater voltage (0-7 V; 2.5min period; 10Hz sampling 
frequency). The L1-normalized response of a single MOS 
sensor (TGS 2620) to each of these analytes is shown in 
Fig 4.  Since the selectivity of MOS materials is dependent 
on the operating temperature [11], the response of the 
sensors at each point in the temperature cycle can be 
considered as a separate pseudo-sensor, and used to 
generate a high-dimensional odor signal. 
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Fig 4. Temperature-modulated response of a MOS sensor to three pure analytes and their binary mixtures: (1) acetone (A), 
isopropyl alcohol (I) and their binary mixture (AI); (2) acetone (A), ammonia (M) and their binary mixture (AM); (3) isopropyl 
alcohol (I), ammonia (M) and their binary mixture (IM). Only the pure analytes were used to train the model. 
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A. Forming olfactory bulb patterns 

In the biological olfactory system, the projection of 
olfactory receptor neurons (ORNs) in the epithelium onto 
the OB is organized such that ORNs expressing the same 
receptor gene converge onto one or a few OB neurons 
[12]. To mimic this convergence, we cluster the pseudo-
sensors based on their selectivity, which we defined as the 
vector of responses across the three pure odors. Fig 5 
shows the clustering of the pseudo-sensors based on their 
response to each of three pure odors. All the pseudo-
sensors belonging to a particular cluster then project to a 
single olfactory bulb neuron. The input to each bulb 
neuron is given by: 
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where O
iR is the response of pseudo-sensor i to odorant O, 

N is the number of pseudo-sensors, and Wij=1 if pseudo-
sensor i converges to bulb neuron Bj and zero otherwise. 
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Fig 5. k-means clustering of pseudo-sensors based on their 
selectivity.  

B. Mixture Segmentation 

In order to perform binary mixture segmentation on 
the experimental datasets, we used a model with six bulbar 
neurons in the olfactory bulb, and six cortical neurons. The 
OB-OC network was initially trained using the three pure 
odors.  The activity of the trained network with anti-
Hebbian feedback connections when exposed to the each 
of two binary mixtures and the ternary mixture is shown in 
Fig 6 (a-c).  As mentioned in section II, anti-Hebbian 
feedback results in the removal of bulb activity that is 
responsible for activity in the cortex. In case a), isopropyl 
alcohol is first recognized in the cortex since is the 
stronger odor in the mixture. Subsequently, feedback from 
cortex inhibits bulb neurons (B1, B6) responsible for this 
cortical activity, allowing acetone to be detected. Fig 7(a) 
shows the relationship between the activity of cortical 
neuron C3 and bulb neuron B6, both of which encode for 
isopropyl alcohol. Input from the bulb neuron B6 increases 

the activity in cortical neuron C3. The cortical feedback 
from C3 then suppresses the activity of B6 and thereby 
itself, allowing the next odor to be recognized. The 
removal of feedback again increases activity in B6 and this 
cycle is repeated. Fig 7 (b) shows the negative correlation 
between cells C2 and C3, which represent acetone and 
isopropyl alcohol, respectively.  

Similar behavior can be observed in case b), where 
acetone (the stronger odor) is detected prior to ammonia, 
and the activity of cortical and bulb neurons for these two 
odors become out of phase.  In the case of iso-propyl 
alcohol and ammonia (results not shown), the mixture 
response resembles that of iso-propyl alcohol alone. As a 
result, the model is unable to segment the mixture into its 
constituents. Hence, the proposed anti-Hebbian feedback 
mechanism appears to be limited to the segmentation of 
binary odor mixtures that are relatively additive.  Finally, 
the response of the model to the ternary mixture of 
acetone, isopropyl alcohol, and ammonia is shown in Fig 6 
(c). The two strong components in the ternary mixture 
(isopropyl alcohol and acetone) are clearly detected and 
segmented. However, cortical neurons encoding ammonia 
show feeble activity, and only during the period of 
transition of cortical response from acetone to isopropyl 
alcohol. 

C. Background suppression 

In order to perform background suppression, the same 
model with six bulbar neurons and six cortical neurons was 
used. The OB-OC network was initially trained using the 
three pure odors. The activity of the trained network with 
Hebbian feedback connections when exposed to the each 
of three binary mixtures is shown in Fig 8 (a-c). In case a) 
and c), cortical feedback from the stronger odor (isopropyl 
alcohol) suppresses the weaker odor (acetone and 
ammonia, respectively). In case b), cortical activity for 
acetone suppresses the weaker odor, in this case ammonia. 
Hence, Hebbian feedback leads to suppression of the 
weaker odor in a binary mixture. 

IV. CONCLUSIONS  

We have presented a neurodynamic model of the bulb-
cortex interaction. Depending on the type of update rule 
used to learn these feedback connections, Hebbian or anti-
Hebbian, the model realizes background suppression or 
mixture segmentation functions, respectively. Anti-
Hebbian feedback connections result in the identification 
of binary mixture components as a time series. Hebbian 
feedback connections allow the olfactory cortex to 
selectively filter the background or weaker odor input from 
the bulb, in analogy with the selective attention mechanism 
proposed by Grossberg [3].  The next stage in this research 
is to extend the model to the segmentation of higher 
mixtures, and suppression of strong background odor. 
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Fig 6. Segmentation of binary mixtures by anti-Hebbian 
cortical feedback. The parameter were set as follows: τ= 
10ms, λ=5ms, α = 0.8, β=0.6, and γ=0.4.  
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Fig 7. Evolution of activity a) C3 (coding Iso-propyl 
alcohol) vs. B6 (coding Iso-propyl alcohol) b) C3 (coding 
Iso-propyl alcohol) vs. C2 (coding Acetone).  
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Fig 8. Suppression of weaker/background odor by Hebbian 
cortical feedback. The parameter were set as follows: τ= 
10ms, λ=5ms, α = 0.8, β=0.6, and γ=0.1. 
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