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Abstract— We propose a biologically inspired model of 
olfactory processing for chemosensor arrays. The model 
captures three functions in the early olfactory pathway: 
chemotopic convergence of receptor neurons onto the 
olfactory bulb, center on-off surround lateral interactions, 
and adaptation to sustained stimuli.  The projection of ORNs 
onto glomerular units is simulated with a self-organizing 
model of chemotopic convergence, which leads to odor-
specific spatial patterning. This information serves as an 
input to a network of mitral cells with center on-off surround 
lateral inhibition, which enhances the initial contrast among 
odors and decouples odor identity from intensity. Finally, 
slow adaptation of mitral cells adds a temporal dimension to 
the spatial patterns that further enhances odor 
discrimination. The model is validated using experimental 
data from an array of temperature-modulated metal-oxide 
sensors.  

Keywords--: Machine olfaction, neurodynamics, 
olfactory coding, self-organization, lateral inhibition, 
sensory adaptation. 

I.  INTRODUCTION  
Olfaction is a primary sense for most animal species. 

Olfactory cues are extensively used for food foraging, trail 
following, mating, bonding, navigation, and detection of 
threats. Compared to other sensing modalities, however, the 
use of olfaction in mobile robotics is still in its early stages.  
From a signal processing perspective, the use of machine 
olfaction as primary robotic sense poses a number of 
challenges, including sensor drift compensation, 
concentration-invariant recognition, orthogonalization of 
odor patterns, mixture separation, and identification against 
interferents and/or complex odor backgrounds.   

Our research focuses on computational models of 
olfactory processing in the context of machine olfaction 
with chemosensor arrays.  Following a growing movement 
in neuromorphic systems research [1], which argues in 
favor of the use of robots as physical models to test 
hypotheses of animal behavior, we believe that 
chemosensor arrays provide an opportunity to test plausible 
models of olfactory processing and, by extension, of 
olfaction-driven animal behaviors.   

To this end, Marques et al. [2] have compared several 
biologically-inspired chemotaxic behaviors for odor source 
localization with mobile robots. Grasso et al. [3] have 

developed a biomimetic robot lobster capable of tracking 
chemical plumes underwater.  Hayes et al. [4] have 
investigated distributed approaches for odor source 
localization with teams of mobile robots. Lilienthal and 
Duckett [5] have developed algorithms for generating odor 
concentration grid maps using a chemosensor array 
onboard a mobile robot.  Russell [6] has investigated trail 
marking and navigation strategies for mobile robots.  Ishida 
et al. [7] have developed an “odor compass” for navigating 
odor plumes towards their source.  

Biologically-inspired odor processing models for 
chemosensor arrays have also received much attention in 
recent years.  Ratton et al. [8] have employed the olfactory 
model of Ambros-Ingerson et al. [9], which simulates the 
closed-loop interactions between the olfactory bulb and 
higher cortical areas, to classify data from micro-hotplate 
metal oxide sensors. White et al. [10, 11] have employed a 
spiking neuron model of the peripheral olfactory system to 
process signals from fiber-optic sensor array.  Pearce et al. 
[12] have investigated the issue of concentration 
hyperacuity by means of massive convergence of ORNs 
onto GL.   Otto et al. have employed the KIII model of 
Freeman et al. [13] to process data from chemical sensors 
[14].  Our prior work [15, 16] has investigated the issue of 
habituation for processing odor mixtures with chemical 
sensor arrays.  

In this paper we adapt three primitives from the early 
olfactory pathway: convergence of olfactory receptor 
neurons (ORNs) onto glomeruli (GL), center on-off 
surround inter-glomerular connections, and slow adaptation 
of mitral (M) cells in response to sustained stimuli.  These 
computational primitives are validated on experimental data 
from an array of temperature-modulated metal-oxide 
semiconductor (MOS) chemoresistors.   Our results are 
consistent with recent findings from neurobiology, and 
show that the model is able to solve the problems of 
concentration-invariant odor detection and contrast 
enhancement through spatio-temporal patterning.   

II. MODEL 
Fig. 1 illustrates the key building of our neuromorphic 

model: (i) ORN-GL chemotopic convergence, (ii) center 
on-off surround lateral inhibition and (iii) slow adaptation. 
A detailed description of the model follows. 
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Fig. 1.  (a) Structure of the proposed model.  Receptor neurons in the olfactory epithelium converge onto the olfactory bulb in a chemotopic manner, 
forming the first organized representation of a stimulus: an olfactory image.  (b) Center on – off surround lateral interactions enhances the contrast of the 
initial spatial pattern.  (c) Finally, local habituation adds a temporal dimension to the spatial representation, leading to a pseudo-periodic attractor.  

 

A. Population coding 
A fundamental difference between machine and 

biological olfaction is the dimensionality of the input space. 
The biological olfactory system employs a large population 
of ORNs (100 million neurons in the human olfactory 
epithelium, replicated from 1,000 primary receptor types), 
whereas its artificial analogue uses very few sensors.  With 
a few exceptions [12], e-noses normally do not contain 
more than 32 sensors, primarily for practical reason (i.e., 
cost) but also due to theoretical constraints (i.e., molecular 
determinants of odor quality are yet unknown).  

To simulate a large population of cross-selective 
sensors, we employ a sensor excitation technique known as 
temperature modulation.  The response of a MOS sensor to 
a volatile compound is partly dependent on its operating 
temperature, which is controlled by applying a voltage to a 
built-in heater. Therefore, varying the heater voltage during 
exposure to a volatile, and capturing the sensor response at 
multiple temperatures, typically yields more information 
than that provided by the sensor response at the constant 
set-point temperature specified by the manufacturer [17]. In 
other words, the response of a sensor at a particular 
temperature can be treated as a separate “pseudo-sensor,” 
and therefore used to simulate a large population of ORNs. 
(refer to Fig. 2(a) ). 

B. Chemotopic mapping 
The projection from the olfactory epithelium onto the 

olfactory bulb is organized such that ORNs expressing 
same receptor gene converge to one or a few GL [18], 
globular structures of neuropil on which ORNs synapse 
mitral cells. This convergence transforms the initial 
combinatorial code into an organized spatial pattern (i.e. an 
olfactory image), which decouples odor identity from 
intensity [19]. In addition, massive convergence improves 
the signal to noise ratio by integrating signals from multiple 
receptor neurons [20, 12]. 

In [19] we have proposed a theoretical model of 
chemotopic convergence based on three principles: (i) 
ORNs with similar affinities project onto neighboring GL, 
(ii) GLs in the olfactory bulb are spatially arranged as a 

two-dimensional surface, and (iii) neighboring GL tend to 
respond to similar odors [21, 22].  Therefore, a natural 
choice to model the ORN-GL convergence is the self-
organizing map (SOM) of Kohonen [23].  In this article we 
apply our previous model as follows: 

• A large population of ORNs is obtained through 
temperature modulation: one pseudo-sensor equals 
one ORN, and 

• ORN affinity is approximated by the response of 
the pseudo-sensor to a set of C volatile 
compounds. 

Therefore, in what follows we will refer to pseudo-
sensors as ORNs, and the SOM nodes to which the pseudo-
sensors converge as GL.  The SOM is presented with a 
population of ORNs, each represented by a vector in C-
dimensional affinity space, and trained to model this 
probability distribution (see Fig. 2(b)).  Once the SOM is 
trained, each ORN is then assigned to the closest GL in 
affinity space, thereby forming a convergence map from 
which the response of each GL can be computed as 
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where A
iR is the response of ORNi to odorant A, N is the 

number of ORNs, and Wij=1 if ORNi converges to GLj and 
zero otherwise.   

This convergence model works well when the different 
sensors are reasonably uncorrelated, since then the 
projection of ORNs across the SOM lattice approximates a 
uniform distribution, i.e., maximum entropy [24].  
Unfortunately, the population of pseudo-sensors created by 
temperature modulation is extremely collinear.  As a result, 
a few GL tend to receive the majority of ORNs, which 
capture the “common-mode” response of the sensor, 
overshadowing the most discriminatory information in the 
temperature-modulated response.  To avoid this issue, the 
activity of each GL is normalized by the number of ORNs 
that converge to it: 
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Note that this solution is not driven by biological 
plausibility but largely by the limitations of our sensors. 

C. Center on-off surround lateral interaction 
The initial glomerular image is further transformed in 

the olfactory bulb (OB) by means of two distinct lateral 
inhibitory circuits. The first of these circuits, which occurs 
between mitral and inhibitory periglomerular (PG) cells, 
has been suggested to perform some form of “volume 
control” to broaden the dynamic range of concentrations at 
which an odorant can be identified [25]. The second circuit 
occurs through interaction between mitral and inhibitory 
granule (G) cells at the output of the OB.  Two roles have 
been suggested for this granule-mediated circuit: (i) 
sharpening of the molecular tuning range of individual 
mitral cells [26], and (ii) global redistribution of activity 
such that the bulb-wide representation of an odorant, rather 
than the individual tuning ranges, becomes specific and 
concise over time [20].  

More recently, both lateral circuits have been found to 
be center on-off surround inhibitory [27] (Fig. 1(b)), an 
organization reminiscent of the classical receptive fields 
mediated by ganglion cells in the retina [28].  This form of 
lateral inhibition performs a winner-take-all (WTA) 
competition, where strongly excited units suppress weakly 
excited ones.  In the retina, center-surround leads to edge 
detection and discrimination of objects by size.  In the 
context of olfaction, these circuits have been suggested to 
perform pattern normalization, noise reduction and contrast 
enhancement of the spatial patterns in the OB [27]. 

We model this center on-off surround circuit with the 
classical additive model from neurodynamics [29, p. 676], 
whose general form is: 
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where vj is the activity of mitral neuron j, τj is the time 
constant that captures the dynamics of the neuron, Lkj is the 
synaptic weight between neurons k and j, M is the number 
of neurons, and Ij is the external input defined by (2), 
properly scaled to balance the contribution of receptor and 
lateral inputs ( )A

j
A
j GI 10= .  Our model assumes a one-to-

one mapping between GL and M neurons: although GL are 
known to project to several M neurons, the computational 
function of this divergence mapping is largely unknown.  
The non-linear activation ( )⋅ϕ  is the logistic function 
defined by: 
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where the constants a1 and a2 are set to  0.0589 and 
49.9900, respectively, to maximize the dynamic range of 
vj.  For simplicity, all mitral neurons are assumed to have 
the same time constant τ=10ms.  Integration of (3) with 
Euler’s method leads to a difference equation: 
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To model center on-off surround, each neuron makes 
excitatory synapses to nearby units and inhibitory synapses 
with distant units as follows: 
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where ( )baU ,  is a uniform distribution between a and b, d 
is the distance between units measured as a Euclidean 
distance within the lattice ( ( ) ( )22

jkjk ccrrd −+−= ; r and 
c being the row and column coordinates of a neuron in the 
lattice).  Self-connections are disabled (Ljj=0).  Thus, the 
output of a given mitral neuron is determined by the 
combined effect of external inputs from ORNs, center on – 
off surround interactions with collateral neurons, as well as 
by its own dynamics.  

D. Temporal patterning through adaptation 
In addition to the spatial activity across glomerular (or 

mitral) units, the olfactory system uses time as an additional 
coding dimension [30]. Friedrich and Laurent [31] have 
shown that the spatial activity in the bulb becomes specific 
and concise over the course of a stimulus, thus further 
reducing the overlap between odor representations.   

To model the temporal aspects of olfactory coding we 
introduce a habituation term h(t), which models the slow 
adaptation of a neuron in the presence of a sustained 
stimulus [32]:  
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where τH is the habituation time constant (τH = 50 ms), )(⋅δ  
is the Dirac delta function, and tH defines those times at 
which habituation is triggered, which occurs when a neuron 
reaches a threshold VH as a result of sustained stimulation. 
In our model, 100)0( =δ  and VH=0.95. Using Euler’s 
integration (∆t=1ms), and combining with (5) yields: 
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Fig. 2.  (a) Temperature modulated response of two MOS sensors (concatenated) to acetone (odor A), isopropyl alcohol (odor B) and ammonia (odor C) 
at three concentrations.  Three replicates per analyte and concentration are shown in the figure to illustrate the repeatability of the patterns. (b) 
Distribution of glomerular SOM nodes and pseudo-sensor repertoire in affinity space (3,000 ORNs, 20×20 lattice). 

This model is functionally similar to the delayed self-
inhibition model proposed in [33] for odor segmentation. 
Adaptation causes M cells that are most active to dominate 
at first, and slowly habituate.  This allows slightly less 
active cells, which were suppressed earlier, to become more 
active.  Hence the more prominent features of an odor are 
contributed first to the temporal patterning, followed by the 
more subtle features. This causes spatial odor patterns, 
which may have very similar initial activity, to evolve and 
become unique over time.  If allowed to evolve over the 
course of multiple adaptation periods, the network activity 
becomes a pseudo-periodic dynamic attractor. 

III. RESULTS 
To validate the model, we have used a database of 

temperature-modulated sensor patterns for three analytes 
acetone (A), isopropyl alcohol (B) and ammonia (C), at 
three different concentrations.  Two Figaro MOS sensors 
(TGS 2600, TGS 2620) [34] were temperature modulated 
using a sinusoidal heater voltage (0-7 V; 2.5min period; 
10Hz sampling frequency). The response of the two sensors 
to the three analytes at the three concentration levels is 
shown in Fig. 2(a).  Each point in the temperature cycle is 
considered as a separate pseudo-sensor, thus resulting in a 
population of N=3,000 pseudo-sensors.  This population 
projects onto a GL layer with M=400 nodes arranged as a 
20×20 lattice. The SOM arranges itself to model the affinity 
space, as shown in Fig. 2(b).  

A. Spatial patterning 
The chemotopic projection of pseudo-sensor responses 

onto the GL layer generates a gross spatial pattern with a 
high degree of overlap across patterns, as shown in Fig. 3 
(top row).  Odors A and B, which produce similar 
responses on the MOS sensors, also lead to very similar GL 
maps prior to processing with the center on – off surround 
network.  Fig. 3 (middle row) shows the resulting GL maps 
following stabilization of the center-surround lateral 
interactions as modeled in (5) (no habituation). Odor A 
leads to heavy activation of regions 1 and 3 (spatial code: 

13).  Odor B produces similar activation in regions 1 and 3, 
but also high activation in region 4 (spatial code: 134).  
This unique region 4 corresponds to pseudo-sensors in the 
smaller peak that occurs for odor B alone (refer to Fig. 
2(a)).  Odor C produces heavy activation of regions 1, 2 
and 5 (spatial code: 125). It is important to note that the 
location of these activation regions is concentration-
invariant, but their amplitude and spread increases with 
concentration, in consistency with recent finding in 
neurobiology [35].  

The center-surround lateral connections have the effect 
of correlating nearby units and decorrelating distant ones.  
The width of the receptive fields plays a significant role in 
this process.  Widespread lateral connectivity leads to 
sparser representations, since a single GL region can 
dominate the competition and suppress activity elsewhere 
in the lattice.  Small receptive fields, on the other hand, 
allow for finer discrimination of similar odor features, e.g., 
as is required to disambiguate regions 2 and 3 in Fig. 3.  

B. Temporal  patterning 
The results presented in the previous subsection were 

based on the sole effect of convergence and center-surround 
inhibition.  Temporal patterning can be induced if mitral 
cells are allowed to habituate above a threshold activity.  
Fig. 4(a) shows the average activity over time in each of the 
five coding regions when the habituation model in equation 
(8) is used.  Activity during the first 50ms is driven by the 
center-surround interactions; subsequent oscillations are 
due to habituation.  As a result of the habituation dynamics, 
the spatial code is transformed into a spatio-temporal 
pattern, where information is jointly encoded in the 
amplitude, phase and frequency of the signals.  Frequency 
modulation can be clearly observed in the second region of 
Fig. 4(a): odors A, B and C present 3, 2 and 5 peaks, 
respectively, during the first 1000ms.  Fig. 4(b) shows the 
global activity across the network projected onto the first 
three principal components.  Odor trajectories originate 
fairly close to one another but move away and settle into 
odor-specific attractors. 
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Fig. 3.  Initial spatial maps generated by the chemotopic convergence (top row), and after stabilization of the center on-off surround lateral interactions 
(middle row).  No habituation was used to produce these results.  The bottom row shows the five sparse coding regions that emerge as a result of the 
lateral interactions. 
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Fig. 4. Temporal coding as a result of habituation.  (a) Temporal evolution of the average activity in each of the five coding areas shown in Fig. 3 for the 
highest concentration of the three analytes.  Odor information is encoded in the amplitude, phase and frequency of these signals; frequency modulation 
can be clearly observed in region 2.  (b) Projection of the global activity on the 400 neurons (20×20 lattice) onto the first three principal components.  
Trajectories initiate close to each other, but eventually move to distinct attractor wings in state space.  

 

C. Stability analysis 
The stability of the dynamic networks in (5) and (8) 

was analyzed by computing the Lyapunov exponents of 
their trajectories in state space.  Given a fiduciary and a 
test orbit with close initial conditions, the largest 
Lyapunov λ1 can be computed as follows [36]: 

∑
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where d(t) is the distance between the fiducial and a test 
orbit at time t, and d’(t) is the distance between them at 
the end of a predefined time step ( 1−− nn tt ).  

In our case, the orbits consist of M-dimensional 
trajectories, each dimension corresponding to the activity 
of a given mitral cell with respect to time.  The largest 
Lyapunov exponent for the recurrent network without 
habituation (5) was found to be negative. This indicates 

that, for the particular inputs in our experimental dataset, 
the system converges to a fixed point (i.e., is 
asymptotically stable).  The largest Lyapunov exponent 
of the recurrent network with habituation (8) was found 
to be close to zero but positive which, given the results in 
Fig. 4(b), suggests that the attractors are limit cycles or 
chaotic. 

IV. SUMMARY AND CONCLUSIONS  
We have presented a neuromorphic model for 

processing chemosensor array signals based on three 
mechanisms found in the olfactory pathway: chemotopic 
convergence of ORNs onto GL, center-surround lateral 
inhibitory in the olfactory bulb, and temporal patterning 
through habituation of mitral projection cells. 

First, a large population of pseudo-sensors is obtained 
by modulating the operating temperature of a metal-oxide 
sensor array. The distribution of pseudo-sensors in 
chemical affinity space is then captured with a Kohonen 



self-organizing map. As a result, sensors become 
clustered according to their selectivity, and a spatial 
pattern emerges across the lattice.  

Based on recent results from neurobiology, a 
recurrent network with center on-off surround lateral 
connections is used to process the initial olfactory image 
in the SOM.  This network is able to significantly reduce 
the overlap between the spatial patterns, and produce a 
sparser representation on a few selected mitral cells.  

Finally, habituation of mitral cells as a result of 
sustained stimuli allows the model to induce a temporal 
patterning of the activity in the bulb that further increases 
the discrimination between odors. 

The proposed model presents a biologically-plausible 
solution for the problem of concentration–invariant 
discrimination of odors.  The next stage in this research is 
to extend the model to the problems of mixture 
segmentation and figure-background separation. 
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