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Abstract 

This article presents a biologically-inspired model 
to remove concentration effects from the multivariate 
response of a gas sensor array.  The model is based on 
the first stage of lateral inhibition in the olfactory bulb, 
mediated by periglomerular interneurons. To simulate 
inputs to the olfactory bulb, sensor-array data are 
processed with a self-organizing model of chemotopic 
convergence proposed earlier, which leads to odor-
specific spatial patterning. Subsequently, a shunting 
lateral inhibitory network, modeled after the role of 
periglomerular cells, compresses the concentration 
information.  The model is validated using experimental 
data from an array of temperature-modulated metal-
oxide sensors. 

1. Introduction 
The input to the olfactory bulb is characterized by 

massive convergence of olfactory receptor neuron 
(ORN) axons expressing the same receptor gene onto a 
single or few target glomeruli [1].  This chemotopic 
convergence creates compact odor maps that decouple 
odor quality from intensity.  The encoded intensity 
information at this early stage is transformed by a layer 
of lateral inhibitory circuits driven by periglomerular 
interneurons.  These lateral interactions are known to be 
shunting-type (divisive inhibition), and have been 
hypothesized to serve as a “volume control” mechanism 
[2], enabling the identification of odorants over several 
log units of concentration. 

In this paper, we present a computational model of 
the gain control circuits in the olfactory bulb, and show 
that the spread of the shunting lateral inhibitions can be 
used to control the degree of concentration removal 
performed by the network. We validate the use of the 
proposed model to perform concentration normalization 
of signals from an array of temperature-modulated 
metal-oxide gas sensors.   

2. Model 
A fundamental difference between machine and 

biological olfaction is the dimensionality of the input 
space. The biological olfactory system employs a large 
population of ORNs (100 million neurons in the human 
olfactory epithelium, replicated from 1,000 primary 
receptor types), whereas its artificial analogue uses very 
few sensors. In order to narrow this dimensionality gap, 
we exploit the temperature-selectivity dependence of 
metal-oxide (MOS) materials [3]. Specifically, we 
modulate the operating temperature of a MOS sensor 

with a slow (mHz) sinusoidal waveform, and treat the 
sensor response at each temperature set-point as a 
“pseudo-sensor.”  

To model the chemotopic convergence of ORNs 
onto glomeruli, we perform a topological clustering of 
the resulting pseudo-sensors according to their 
selectivity.  Formally, we define the selectivity of a 
pseudo-sensor by its response across a set of C volatile 
compounds as follows: 
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where O
iORN is the response of ORNi to odor O, and C 

is the number of odorants. We will refer to this C-
dimensional space as the affinity space.   

The probability distribution of pseudo-sensors in this 
affinity space is then modeled with a Kohonen Self-
Organizing Map (SOM) [4], whose nodes can be 
considered as virtual glomerular units. Once the SOM is 
trained, each pseudo-sensor is finally assigned to the 
closest SOM node in affinity space, thereby forming a 
convergence map from which the response of each 
glomerulus can be computed as: 
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where O
iR is the response of pseudo-sensor i to odorant 

O, N is the number of pseudo-sensors, and Wij=1 if 
pseudo-sensor i converges to SOM node j and zero 
otherwise.  

Shunting lateral inhibition by periglomerular 
interneurons is modeled as follows:  
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where O
iG  is the activity of SOM node i (i.e., after 

chemotopic convergence), O
ix is the corresponding 

neuron output to odor O, O
iDx− is a decay term that 

models the dynamics of a neuron, ( ) O
i
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shunting self-excitation, B is the maximum activity of 
neuron ( BxO

i
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is the 

shunting inhibition from other neurons [5].   
The connection matrix C modeling the shunting 

inhibition is set as follows: 
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where ( )baU ,  is a uniform distribution between a and 
b, and d is the distance between units measured as a 
Euclidean distance within the lattice 

( ( ) ( )22
ikik colcolrowrowd −+−= ; row and col 

being the row and column coordinates of a neuron in the 
lattice), M is the number of SOM nodes, and r 
determines the width of the lateral inhibitory 
connections.  Self-connections are disabled (cii=0).   

It can be shown that the steady-state output of each 
neuron is: 
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which, when cki=1 ∀ k,i, and the parameter D=0, 
becomes proportional to the (L1) normalized response 
of its input relative to the total network activity: 
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The original study by Grossberg [5] only considered 
global connections for the purpose of pattern 
normalization. However, in this work, we show that by 
adjusting the spread of the lateral inhibitiory 
connections using equation (4), the degree of 
concentration normalization can be controlled 
parametrically. 

3. Results 
To validate the model, we have collected a database 

of temperature-modulated sensor patterns for three 
analytes: acetone (A), isopropyl alcohol (B) and 
ammonia (C), at three different concentrations. Three 
replicas were sampled for each combination of analyte 
and concentration. Two Figaro MOS sensors (TGS 
2600, TGS 2620) [6] were temperature modulated using 
a sinusoidal heater voltage (0-7 V; 2.5min period; 10Hz 
sampling frequency). The response of the two sensors 
(concatenated) to the three analytes at the three 
concentration levels (three repetitions each) is shown in 
Figure 1. Each point in the temperature cycle is 
considered as a separate pseudo-sensor, thus resulting in 
a population of 3,000 pseudo-sensors.   

The population of pseudo-sensors thus generated is 
projected onto a GL layer with 400 nodes, arranged as a 
20x20 SOM lattice, based on the convergence model. 
Only the sensor response to the highest concentration of 
each analyte was used to generate the SOM 
convergence map.  Figure 2 shows the odor maps that 
result from presenting the trained SOM with the sensor 
response in Figure 1 (only one repetition is shown). It 

can be clearly seen that the identity of the odor is 
encoded by a unique spatial pattern across SOM nodes, 
whereas concentration is related to the intensity and 
spread of this pattern.   

The PCA scatterplot of activity across the network is 
shown in Figure 3. Without shunting inhibition (a), the 
model preserves most of the concentration information.  
With global inhibition (c), the network is able to remove 
most of the concentration information and provide 
maximum separability between odors. Different degrees 
of cancellation can be achieved by controlling the 
spread of the shunting lateral inhibitory connections (for 
e.g., refer Figure 3(b)). A detailed characterization of 
the model is presented in the next section.  
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Figure 1. Temperature modulated response of two 

Figaro MOS sensors to three analytes at three 
concentrations (three samples each). 
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Figure 2. Spatial odor maps generated by 

chemotopic convergence of 3,000 pseudo-sensors onto a 
20x20 SOM. Activity of each GL is normalized by the 
number of ORNs that converge to it. 
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4. Characterization of the model 
To characterize our model, we employ a measure of 

separability between categories related to the Fisher’s 
objective function [7]: 
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where SW and SB are the within-class and between-class 
scatter matrices, respectively, defined as follows: 
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where x is the output pattern of the OB model, Q is the 
number of odor classes, µq and nq are the mean vector 
and number of examples for odor q, respectively, n is 
the total number of examples in the dataset, and µ is the 
mean vector of the entire distribution. Being the ratio of 
the spread between classes relative to the spread within 
each class, the measure J increases monotonically as 
classes become increasingly more separable.  

We define two different measures to quantify 
concentration-invariant separability and concentration 
information as follows: 

Assuming a three-odor problem, the concentration-
invariant separability is measured by:  

CABCABodor JwJwJwJ 321 ++=  (10) 
where JAB, JBC, and JCA are the separability between 
odors A and B, B and C, and C and A, respectively, and 
w1, w2, and w3 are normalization weights to prevent any 
pair of odors from dominating the metric.  

The concentration information within each odor 
class is defined by:  

321632153214 cccbbbaaaconc JwJwJwJ ++=  (11) 
where Ja1a2a3, Jb1b2b3, and Jc1c2c3 are the separability 
among the three concentrations within an odor, and w4, 
w5, and w6 are normalization weights to balance the 
relative contribution of these three terms. In this paper, 
the normalization weights are determined so that the 
maximum value of each term (w1JAB, w2JBC, w3JCA, 
w4Ja1a2a3, w5Jb1b2b3, w6Jc1c2c3) becomes 1.  

4.1 Spread of the lateral connections (r) 
Figure 4(a) shows the concentration-invariant 

separability measure (Jodor) as a function of the width of 
the shunting inhibitory connections. Maximum 
separability between the odors is achieved for small r 
(global connections). Global connections remove most 
of the concentration information, a result that follows 
from the steady-state response in equation (5) and the 
scatterplot in Figure 3(c). In contrast, reduction in the 
width of the shunting inhibition allows the within class-
scatter to increase, thereby reducing Jodor. 

Figure 4(b) shows the concentration information 
measure (Jconc) as a function of the width of the shunting 
inhibitory connections. Maximum separability is 
achieved for no shunting inhibition (r=20). In this case 
concentration information serves as the principal source 
of variance, as shown in Figure 3(a). As the connections 
become global, most of the concentration information is 
removed.  In between the two extremes, different 
degrees of separability can be achieved among 
concentration levels of the same odor. 

The width of the lateral inhibition can therefore be 
used to provide an appropriate tradeoff between odor 
class information (between class-scatter) and odor 
concentration information (within class-scatter). 
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Figure 3. PCA scatterplot of SOM activity following normalization with the shunting inhibition network (A1: 

lowest concentration of analyte A, C3: highest concentration of analyte C). Model parameters B=1, D=0.1. 
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Figure 4. Characterization of the model; small r 
represents global connections and large r represents 
local connections. (a) Measure of concentration-
invariant separability (Jodor) as a function of the width of 
shunting lateral inhibition. (b) Measure of concentration 
information (Jconc) as a function of the width of shunting 
lateral inhibition. 
4.2  Rate of exponential decay (D) 

 Figure 5(a,b) shows the concentration-invariant 
separability and concentration information measures as 
a function of decay rate D. For small value of D 
( ∑<<

k

O
kGD ), the model achieves concentration 

compression similar to the L1 norm, thereby improving 
separability between odors as shown in Figure 5(a). For 
large D values ( ∑>>

k

O
kGD ), the steady state response 

of the model is a scaled version of its inputs and hence 
the model retains all the concentration information, as 
shown in Figure 5(b).  Therefore, for a fixed spread of 
lateral connections, the exponential decay rate D can 
also be used to control the amount of concentration 
compression.  

5. Conclusions 
We have presented a neurodynamic model of the 

first stage of lateral inhibition in the olfactory bulb, 
mediated by periglomerular interneurons. We have 
shown that global connections remove most of the 
concentration information, increasing the separability 
between odors. Local connections, on the other hand, 
retain most of the concentration information but do not 
increase separability between odor classes. By 
controlling the width of the lateral connections or the 
rate of decay of the neurons, different degrees of 
concentration normalization can be achieved. 

 The next stage in this research is to characterize this 
normalization process using theoretical dose-response 
curves for different sensor models including metal oxide 
sensors, conducting polymer sensors and olfactory 
receptor neurons.  
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Figure 5. Characterization of the exponential decay rate 
(D) (a) Measure of concentration-invariant separability 
(Jodor) as a function of the decay parameter D. (b) 
Measure of concentration information (Jconc) as a 
function of the decay parameter D. (model parameters 
r=0.5 and cki=1 ∀ k,i).  Dashed line indicates 
separability without shunting-inhibition normalization. 
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