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Abstract 
This article presents a signal-processing technique capable 

of canceling the effect of background chemicals from the 
multivariate response of a sensor array.  We propose a 

generalization of the Fisher’s eigenvalue solution that 

minimizes the discrimination between undesirable 
chemicals and a neutral reference.  The proposed technique 

is a generalization of an earlier model that was limited to 

the removal of single volatiles. A reformulation of class 
memberships allows the new model to cancel the effect of 

both single and mixture backgrounds.  The model is 

validated on experimental data from an array of 
temperature-modulated metal-oxide sensors exposed to 

binary and ternary mixtures. 

INTRODUCTION 
Sensory adaptation is a mechanism by which an organism 

reduces its sensitivity to constant or strong stimuli, thus 

preventing sensory overflow and improving the ability to 

detect new inputs [1].  Two forms of adaptation can be 

recalled from everyday life.  Upon exiting a building on a 

sunny day one is initially blinded by the intensity of the 

light, but the retina rapidly adapts to the new lighting 

conditions.  Similarly, a person entering a coffee shop is 

immediately greeted by the smell of fresh ground coffee, 

but that sensation vanishes after a few minutes.   

The objective of our work is to develop a computational 

model for chemical sensor arrays capable of mimicking the 

effects of olfactory adaptation to specific stimuli. Such 

capability would have a broad impact in sensor arrays as a 

mechanism to remove background odors (e.g., matrix 

effects) and enhance the selectivity of the system towards 

the interesting components in a given chemical detection 

problem. To this end, in [2] we have presented a statistical 

pattern recognition model that was able to cancel the effect 

of single volatiles.  The present work is a generalization of 

the earlier model that is capable of removing the effect of 

both single and mixture backgrounds. 

SENSORY ADAPTATION AS A SUBSPACE 
PROJECTION 

Our approach to sensory adaptation is illustrated in Fig. 

1(a).  The multivariate response of a sensor array, denoted 

by feature vector x, is projected onto a low dimensional 

subspace y by means of a linear transformation W( ) that 

minimizes contributions from the adapting stimulus .  The 

computational function that this transformation performs is 

best described with an example.  Consider a sensory system 

designed to detect the presence of three analytes (A, B, C), 

which may appear in mixtures, and a neutral (N).  Assume 

that the system has been exposed to analyte A for a long 

period of time.  As illustrated in Fig. 1 (b), the system 

should then display decreased sensitivity to the adapting 

stimulus: the response to analyte A becomes close to the 

neutral, and the response to mixtures containing analyte A 

approaches that to the novel components in the mixture 

(e.g., the mixture A+B becomes similar to analyte B alone). 

This computational function is consistent with results from 

olfactory psychophysics showing that, under adaptation to 

one of the mixture components, the sensory system shifts 

the perceived quality towards the remaining component(s) 

in the mixture [3, 4].  
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Fig. 1.  (a) Sensory adaptation as a subspace projection: the sensor-array response x is projected onto subspace 

y that minimizes the discrimination of previous stimulus from a neutral. (b) Removal of background chemical A 
in a ternary mixture problem. The projection is formed by grouping class labels so as to reduce the contribution of 
the adapting stimulus. 
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Table 1.  Indicator variables prior to and following adaptation 

  (a) Prior to adaptation  (b) Adaptation to CBA

Class
N

A

N

B

N

C

N

N A B C N

A  1 0 0 0  1- A 0 0 A

B  0 1 0 0  0 1- B 0 B

C  0 0 1 0  0 0 1- C C

AB  1 1 0 0  1- A 1- B 0 min( A, B)

AC  1 0 1 0  1- A 0 1- C min( A, C)

BC  0 1 1 0  0 1- B 1- C min( B, C)

ABC  1 1 1 0  1- A 1- B 1- C min( A, B, C)

N  0 0 0 1  0 0 0 1 

The adapting projection W( ) proposed in this work is 

based on a reformulation of Fisher’s linear discriminant 

analysis (LDA).  LDA is a supervised dimensionality-

reduction technique that finds a linear projection y=Wx

such that the discrimination of classes in the projection 

space y is maximized.  It can be shown [5] that the rows of 

W are the eigenvectors corresponding to the largest 

eigenvalues of the matrix 
BW

SS 1 , where SW and SB are the 

within-class and between-class scatter matrices, 

respectively, defined by: 
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where Q is the number of classes, n is the total number of 

examples in the dataset, q and nq are the mean vector and 

number of examples of class q, respectively, and  is the 

mean vector of the entire distribution.   

To mimic olfactory adaptation to A, we modify the 

definition of classes in equations (1-3) such that 

discrimination is directed towards the grouping of odors in 

Fig. 1 (b).  Similarly, adaptation to mixture AB (see Fig. 

4(d)) can be achieved by maximizing the separability 

between groups {A,B,AB,N} and {C,AC,BC,ABC}.  

For simplicity, we derive an analytical solution for a 

chemical space with three components and a neutral. 

Formally, we define a vector of indicator variables 
N

N

N

C

N

B

N

A

N x , where 1N  if sample x

contains chemical(s) , and zero otherwise (see Table 

1(a)).  The superscript N (for Neutral) denotes that the LDA 

projection has not undergone adaptation.  For a given 

adaptation scenario, we also define an adaptation vector 

CBA , where 10 denotes the degree of 

adaptation of the system to analyte .  Adaptation is then 

achieved by subtracting  from xN , as described in 

Table 1(b), to form adapted indicator variables x . From 

here, adapted mean, within-group and between-group 

covariance matrices can be defined as: 
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where Pp ..1  is the set of primary analytes, including 

the neutral (e.g., P=4 for the example in Table 1).  Note 

that equations (4-6) are equivalent to (1-3), except for 

examples are now weighted by their adapted indicator 

variables x . As a result, each adaptation vector 

leads to a different set of eigenvalues of  BW SS
1

.  For the 

particular case 000 , the eigen-solution is a 

projection where the mixtures have patterns that are the 

average of their constituent analytes (i.e., mixture AB 

projects halfway between analytes A and B), as illustrated 

later in Fig. 3.  In all other cases, the eigen-solution is a 

projection that reduces the contribution of the adapting 

analyte(s), as illustrated earlier in Fig. 1(b). 

EXPERIMENTAL SETUP 
The proposed algorithm was validated on a sensor array 

with four Figaro metal-oxide chemoresistors (2602, 2610, 

2611 and 2620) [6].  To improve the information content of 

the array, the sensors were temperature modulated using a 

sinusoidal heater voltage (0-7 V; 2.5min period) [7].  The 

sensor response was sampled with a frequency of 10Hz.   
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The sensor array was exposed to the static headspace of 

mixtures from three analytes: acetone (A), isopropyl 

alcohol (B) and ammonia (C), at three dilution levels in 

distilled water (the neutral).  The lowest dilution of the 

analytes was 0.3 v/v% for acetone, 1.0 v/v% for isopropyl 

alcohol and 33 v/v% for ammonia.  These baseline 

dilutions were chosen so that the average isothermal 

response (i.e., a constant heater voltage of 5V) across the 

four sensors was similar for the three analytes, thus 

ensuring that they could not be trivially discriminated.  

Two serial dilutions with a dilution factor of 1/3 were also 

acquired, resulting in 24 samples per day (7 mixtures  3 

concentrations, plus 3 neutral samples). The process was 

repeated on three separate days, for a total of 72 samples.  

The temperature modulated response of one of the sensors 

to the three concentrations of the single analytes is shown 

in Fig. 2.  The sinusoidal heater voltage starts at 0V at t=0

samples, reaches a maximum of 7V at t=750 sa., and 

returns to 0V at t=1500 sa. Each analyte leads to a unique 

pattern, defined by the amplitude and location of a 

maximum in conductance. Two maxima are easily resolved 

in the case of isopropyl alcohol. 
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Fig. 2.  Temperature modulated response of a MOS 
sensor to the three analytes at three concentrations.  
Three replicates per analyte and concentration are 
shown to illustrate the repeatability of the patterns.  

Mixtures are not shown to avoid clutter. 

RESULTS
In order to form a feature vector for each example, the 

temperature-modulated response of each sensor was 

decimated down to 5 samples by taking the sensor 

conductance at intervals of 37.5 seconds during the 2.5 

minute temperature cycle in Fig. 2.  As a result, a 20-

dimensional feature vector was obtained for each example 

(5 samples  4 sensors).  The dataset was split into a 

training set containing two-thirds of the data (48 examples) 

and a test set with one-third (24 examples).  In all 

adaptation results that follow, eigenvalues for the 

projections were computed using only training data. 

Fig. 3 shows the projection of training and test data onto 

the three largest eigenvalues of BW SS
1

 in the absence of 

adaptation (i.e., 000 ).  As a result of the 

grouping imposed by the indicator variables, the examples 

arrange as a tetrahedron whose vertices are defined by the 

single analytes (A,B,C,N).  It is interesting to note how 

mixture samples project at or near the mean of the 

constituent analytes, a symmetry imposed by the grouping 

of analytes in equations (4-6).   
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Fig. 3.  Three-dimensional projection that results 
from the non-adapted indicator variables in Table 
1(a).  Analytes organize in a topographic fashion 

along the vertices and edges of a tetrahedron. 

Fig. 4(a) illustrates partial removal of volatile A with 

adaptation vector 005.0 .  As a result, samples 

from odor A approach those of the neutral, whereas 

mixtures AB, AC and ABC become closer to B, C, and BC, 

respectively. Fig. 4(b) illustrates full removal of volatile B 

with adaptation vector 010 . As a result, samples of 

B, BC, AB and ABC overlap entirely with the neutral, C, 

A, and AC, respectively. Fig. 4(c) shows partial removal of 

mixture AC with adaptation vector 60.0030.0 . As 

a result, samples of A, C and AC project closer to the 

neutral, their distance being inversely proportional to the 

adaptation parameter. Note how mixture AC is both 

approaching the neutral and becoming closer to A. Finally, 

Fig. 4(d) shows full removal of mixture AB 

000.100.1 .  As a result, samples of A, B and AB 

are confounded with the neutral, and the remaining samples 

map close together. In the latter case, only the first 

discriminant projection (FLD1) is meaningful since the 

grouping leads to a binary discrimination problem and, as a 

result, the between-group scatter matrix becomes of rank 

one (i.e., the second eigenvalue is zero.) 

DISCUSSION 
Fig. 3 provides an intuitive explanation of the subspace 

projection mechanism to sensory adaptation.  By rotating 

the tetrahedron in Fig. 3, one can find a two-dimensional 

view where the contributions of a given analyte are 

reduced.  The method proposed in this article operates in a 
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similar fashion by projecting from original feature space, 

which affords as many degrees of freedom for the rotation 

as dimensions (20 in the case of our database).  

The method is able to simulate different degrees of 

adaptation to both single analytes and mixtures. In the 

absence of adaptation, the method seeks a projection where 

pattern additivity is preserved (e.g., xAB=xA+xB). It is also 

important to note the stability of the method, demonstrated 

by the ability to produce projections that generalize well to 

unseen test data.  

The method has been validated on an experimental dataset 

containing binary and ternary mixtures.  The next stage of 

this work is to evaluate the ability of the method to remove 

background odors and matrix effects in complex 

application scenarios. 
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Fig. 4.  Examples of background cancellation: (a) partial removal of volatile A (b) full removal of volatile B, (c) 
partial removal of mixture AC, and (d) full removal of mixture AB.  Both training examples and test examples 

(denoted by an asterisk *) are shown to illustrate the generalization properties of the projection. 
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